\qquad
\qquad
\qquad

Enrichment

Distance Using Polar Coordinates

Suppose you were given the polar coordinates of two points $P_{1}\left(r_{1}, \alpha_{1}\right)$ and $P_{2}\left(r_{2}, \alpha_{2}\right)$ and were asked to find the distance d between the points. One way would be to convert to rectangular coordinates $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}), and apply the distance formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

A more straightforward method makes use of the Law of Cosines.

1. In the above figure, the distance d between P_{1} and P_{2} is the length of one side of $\triangle O P_{1} P_{2}$. Find the lengths of the other two sides.
2. Determine the measure of $\angle P_{1} O P_{2}$.
3. Write an expression for d^{2} using the Law of Cosines.
4. Write a formula for the distance d between the points $P_{1}\left(r_{1}, \alpha_{1}\right)$ and $P_{2}\left(r_{2}, \alpha_{2}\right)$.
5. Find the distance between the points ($3,45^{\circ}$) and ($5,25^{\circ}$). Round your answer to three decimal places.
6. Find the distance between the points $\left(2, \frac{\pi}{2}\right)$ and $\left(4, \frac{\pi}{8}\right)$. Round your answer to three decimal places.
7. The distance from the point $\left(5,80^{\circ}\right)$ to the point $\left(r, 20^{\circ}\right)$ is $\sqrt{21}$. Find r.
