NAME

DATE ___

PERIOD

Enrichment

Distance Using Polar Coordinates

Suppose you were given the polar coordinates of two points $P_1(r_1, \alpha_1)$ and $P_2(r_2, \alpha_2)$ and were asked to find the distance *d* between the points. One way would be to convert to rectangular coordinates (x_1, y_1) and (x_2, y_2) , and apply the distance formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

A more straightforward method makes use of the Law of Cosines.

- 1. In the above figure, the distance d between P_1 and P_2 is the length of one side of $\triangle OP_1P_2$. Find the lengths of the other two sides.
- **2.** Determine the measure of $\angle P_1 O P_2$.

3. Write an expression for d^2 using the Law of Cosines.

- **4.** Write a formula for the distance d between the points $P_1(r_1, \alpha_1)$ and $P_2(r_2, \alpha_2)$.
- **5.** Find the distance between the points $(3, 45^\circ)$ and $(5, 25^\circ)$. Round your answer to three decimal places.
- **6.** Find the distance between the points $\left(2, \frac{\pi}{2}\right)$ and $\left(4, \frac{\pi}{8}\right)$. Round your answer to three decimal places.
- 7. The distance from the point (5, 80°) to the point (r, 20°) is $\sqrt{21}$. Find r.

Advanced Mathematical Concepts